- 11. A telecommunications network according to claim 10, characterized in that the vibration modulation includes using a speech encoding algorithm.
- 12. A telecommunications network according to claim 10, characterized in that the software-based signal processor responds to user adjustable vibration defining parameters.
- 13. A telecommunications network according to claim 12, characterized in that the user adjustable vibration defining parameters include direct numerical parameters.
- 14. A telecommunications network according to claim 12, characterized in that the user adjustable vibration defining parameters include a pre-set list of parameters.
- **15**. A telecommunications network according to claim 1, characterized in that the vibrotactile actuator is an electromechanical actuator.
- 16. A telecommunications network according to claim 1, characterized in that the vibrotactile actuator is suitably arranged in a housing of the mobile phone for providing vibration on the user's fingers.
- 17. A telecommunications network according to claim 1, characterized in that the vibrotactile actuator is suitably arranged in a housing of the mobile phone for providing vibration on the user's facial skin.
- 18. A telecommunications network according to claim 1, characterized in that the vibrotactile actuator is suitably arranged in a housing of the mobile phone for providing vibration on the user's wrist.
- 19. A telecommunications network according to claim 1, characterized in that the vibrotactile actuator is suitably arranged in a housing of the mobile phone for providing vibration on the user's cheek.
- **20**. A telecommunications network according to claim 1, characterized in that the vibrotactile actuator is an acoustic actuator suitably sized for fitting into a user's ear.
- 21. A telecommunications network according to claim 3, characterized in that the telecommunications network includes a separately-priced vibrotactile service network.
- 22. A telecommunications network according to claim 3, characterized in that the audio-to-vibrotactile converter includes a personalized hearing parameters module for adjusting speech processing so a user can have personalized hearing parameters.
- 23. A telecommunications network according to claim 22, characterized in that the personalized hearing parameters can either be selected by a trial-and-error basis, preset values or personalized values given by a user's physician.
- **24.** A telecommunications network according to claim 4, characterized in that the telecommunications signal contains information about the incoming speech that is a source for vibration modulation.
- 25. A telecommunications network according to claim 1, characterized in that the telecommunications network uses an F0-format for speech encoding to assist in interpreting incoming speech in noisy environments.

26. A mobile phone comprising:

- an audio-modulated vibrotactile module that responds to a telecommunications signal containing information about incoming speech from a called/calling party, for providing an audio-modulated vibrotactile module force containing information about the incoming speech from the called/calling party to vibrate a user's fingers, facial skin, wrist, cheek or other suitable location:
- the audio-modulated vibrotactile module having an audioto-vibrotactile converter that responds to the telecommunications signal, for providing an audio-to-vibrotactile converter signal containing information about a vibration modulation of the incoming speech from the called/calling party; and
- the audio-modulated vibrotactile module also having a vibrotactile actuator that responds to the audio-to-vibrotactile converter signal, for providing the audio-modulated vibrotactile module force in the form of a vibrotactile actuator force.
- 27. A method comprising the steps of:
- converting a telecommunications signal containing information about incoming speech from a called/calling party into an audio-to-vibrotactile converter signal containing information about a vibration modulation of the incoming speech from the called/calling party; and
- transforming the audio-to-vibrotactile converter signal into an audio-modulated vibrotactile module force containing information about the incoming speech from the called/calling party to vibrate a user's fingers, facial skin, wrist, cheek or other suitable location.
- **28**. A method according to claim 27, characterized in that the step of converting includes performing vibration modulation using frequency domain filtering or equalization.
- **29.** A method according to claim 27, characterized in that the step of converting includes performing vibration modulation using linear/non-linear amplification.
- **30**. A method according to claim 27, characterized in that the step of converting includes performing vibration modulation using mixing speech signals with other signals .
- **31**. A method according to claim 27, characterized in that the step of converting includes performing vibration modulation using a speech encoding algorithm.
- **32.** A method according to claim 26, characterized in that the step of transforming includes electromechanically actuating the audio-modulated vibrotactile module force.
- **33.** A method according to claim 26, characterized in that the step of transforming includes acoustically actuating the audio-modulated vibrotactile module force.

* * * * *